16 research outputs found

    Status of the GEO 600 squeezed-light laser

    Full text link
    In the course of the high-frequency upgrade of GEO 600, its optical configuration was extended by a squeezed-light laser [1]. Recently, a non-classically enhanced measurement sensitivity of GEO 600 was reported [2]. In this paper, a characterization of the squeezed-light laser is presented. Thereupon, the status of the integration into GEO 600 is reviewed, focussing on the sources of optical loss limiting the shot noise reduction by squeezing at the moment. Finally, the possibilities for a future loss reduction are discussed.Comment: Proceeding of the 9th Edoardo Amaldi Conference on Gravitational Wave

    The 10m AEI prototype facility A brief overview

    Get PDF
    The AEI 10 m prototype interferometer facility is currently being constructed at the Albert Einstein Institute in Hannover, Germany. It aims to perform experiments for future gravitational wave detectors using advanced techniques. Seismically isolated benches are planned to be interferometrically interconnected and stabilized, forming a low-noise testbed inside a 100 m^3 ultra-high vacuum system. A well-stabilized high power laser will perform differential position readout of 100 g test masses in a 10 m suspended arm-cavity enhanced Michelson interferometer at the crossover of measurement (shot) noise and backaction (quantum radiation pressure) noise, the so-called Standard Quantum Limit (SQL). Such a sensitivity enables experiments in the highly topical field of macroscopic quantum mechanics. In this article we introduce the experimental facility and describe the methods employed, technical details of subsystems will be covered in future papers

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer’s dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1  dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%–8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded

    Corresponding author:

    No full text
    2 This study uses event-related brain potentials (ERPs) to investigate the processing of morphologically regular and irregular words during auditory comprehension. ERPs were recorded while 23 German-speaking subjects listened to correctly and incorrectly inflected noun plural forms presented in sentential contexts. ERP responses to violations of morphological structure were different to those of lexical (word-level) violations: the former elicited LAN/P600 effects, and the latter an enhanced N400 component relative to the correctly inflected plural forms. This difference replicates previous results from visual ERP studies and supports the distinction between combinatorial and memory-based processing of morphologically complex words. In addition, LAN/P600 effects were found to be more prominent in the auditory domain than in a previous visual study using similar materials

    Gravitational Wave Data Analysis: Computing Challenges in the 3G Era

    Get PDF
    Cyber infrastructure will be a critical consideration in the development of next generation gravitational-wave detectors. The demand for data analysis computing in the 3G era will be driven by the high number of detections as well as the expanded search parameter space for compact astrophysical objects and the subsequent parameter estimation follow-up required to extract the nature of the sources. Additionally, there will be an increased need to develop appropriate and scalable computing cyberinfrastructure, including data access and transfer protocols, and storage and management of software tools, that have sustainable development, support, and management processes. This report identifies the major challenges and opportunities facing 3G gravitational-wave observatories and presents recommendations for addressing them. This report is the fourth in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book, iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era (this report), v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    The Next Generation Global Gravitational Wave Observatory: The Science Book

    No full text
    The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it possible to address unsolved problems in numerous areas of physics and astronomy, from Cosmology to Beyond the Standard Model of particle physics, and how they could provide insights into workings of strongly gravitating systems, astrophysics of compact objects and the nature of dense matter. It is inevitable that observatories of such depth and finesse will make new discoveries inaccessible to other windows of observation. In addition to laying out the rich science potential of the next generation of detectors, this report provides specific science targets in five different areas in physics and astronomy and the sensitivity requirements to accomplish those science goals. This report is the second in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book (this report), iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era, v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    The Next Generation Global Gravitational Wave Observatory: The Science Book

    Get PDF
    The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it possible to address unsolved problems in numerous areas of physics and astronomy, from Cosmology to Beyond the Standard Model of particle physics, and how they could provide insights into workings of strongly gravitating systems, astrophysics of compact objects and the nature of dense matter. It is inevitable that observatories of such depth and finesse will make new discoveries inaccessible to other windows of observation. In addition to laying out the rich science potential of the next generation of detectors, this report provides specific science targets in five different areas in physics and astronomy and the sensitivity requirements to accomplish those science goals. This report is the second in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book (this report), iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era, v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    Prospective Observational Study of Pazopanib in Patients with Advanced Renal Cell Carcinoma (PRINCIPAL Study)

    No full text

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text
    corecore